VOC格式数据集转YOLO格式

本文最后更新于 2024年10月2日 上午

VOC格式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
VOC
--Annotations
00001.xml
<annotation>
<size>
<width>320</width>
<height>160</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>word</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>234</xmin>
<ymin>27</ymin>
<xmax>267</xmax>
<ymax>63</ymax>
</bndbox>
</object>
</annotation>
00002.xml
00003.xml
00004.xml
--JPEGImages
00001.png
00002.png
00003.png
00004.png
--ImageSets
--Main
train.txt
00001
00004
val.txt
00002
test.txt
00003

YOLO格式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
YOLO
--images
--train
00001.jpg
00004.jpg
--val
00002.jpg
--test
00003.jpg
--labels
--train
00001.txt
0 0.7828125 0.28125 0.10312500000000001 0.225
0 0.2328125 0.603125 0.109375 0.20625000000000002
0 0.5703125 0.596875 0.115625 0.21875
0 0.74375 0.7406250000000001 0.09375 0.19375
00004.txt
--val
00002.txt
--test
00003.txt

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import random
import shutil
import xml.etree.ElementTree as ET


class_names = ['','']
voc_dir = '.'
yolo_dir = '.'

# 创建yolo格式的目录结构
os.makedirs(os.path.join(yolo_dir, 'images', 'train'), exist_ok=True)
os.makedirs(os.path.join(yolo_dir, 'images', 'val'), exist_ok=True)
os.makedirs(os.path.join(yolo_dir, 'images', 'test'), exist_ok=True)
os.makedirs(os.path.join(yolo_dir, 'labels', 'train'), exist_ok=True)
os.makedirs(os.path.join(yolo_dir, 'labels', 'val'), exist_ok=True)
os.makedirs(os.path.join(yolo_dir, 'labels', 'test'), exist_ok=True)

# 读取训练集、验证集和测试集的文件名
with open(os.path.join(voc_dir, 'ImageSets', 'Main', 'train.txt')) as f:
train_list = f.read().splitlines()
with open(os.path.join(voc_dir, 'ImageSets', 'Main', 'val.txt')) as f:
val_list = f.read().splitlines()
with open(os.path.join(voc_dir, 'ImageSets', 'Main', 'test.txt')) as f:
test_list = f.read().splitlines()

# 转换标注文件格式
for split_name, split_list in [('train', train_list), ('val', val_list), ('test', test_list)]:
for image_name in split_list:
# 复制图片
src_image_path = os.path.join(voc_dir, 'JPEGImages', f'{image_name}.png')
dst_image_path = os.path.join(yolo_dir, 'images', split_name, f'{image_name}.jpg')
shutil.copy(src_image_path, dst_image_path)

# 解析XML标注文件
xml_path = os.path.join(voc_dir, 'Annotations', f'{image_name}.xml')
tree = ET.parse(xml_path)
root = tree.getroot()

# 获取图片大小
size_elem = root.find('size')
width = int(size_elem.find('width').text)
height = int(size_elem.find('height').text)

# 转换标注
with open(os.path.join(yolo_dir, 'labels', split_name, f'{image_name}.txt'), 'w') as f:
for obj_elem in root.findall('object'):
class_name = obj_elem.find('name').text
if class_name not in class_names:
continue

bbox_elem = obj_elem.find('bndbox')
xmin = int(float(bbox_elem.find('xmin').text))
ymin = int(float(bbox_elem.find('ymin').text))
xmax = int(float(bbox_elem.find('xmax').text))
ymax = int(float(bbox_elem.find('ymax').text))

x_center = (xmin + xmax) / 2 / width
y_center = (ymin + ymax) / 2 / height
w = (xmax - xmin) / width
h = (ymax - ymin) / height

# 写入标注
f.write(f"{class_names.index(class_name)} {x_center:.6f} {y_center:.6f} {w:.6f} {h:.6f}\n")

VOC格式数据集转YOLO格式
https://xinhaojin.github.io/2023/04/14/VOC格式数据集转YOLO格式/
作者
xinhaojin
发布于
2023年4月14日
更新于
2024年10月2日
许可协议