yolov5单目标检测简化改进

backbone部分,去掉了7.8两层的conv和c3,只做到16倍下采样

head部分,去掉所有concat,3个检测层改为1个

Model size:3.63M->1.01M

Params:1.7M->0.45M

FLOPs:4.1G->2.8G

mAP:81.46->81.96

主要原因应该是对于我的检测任务,待检测目标的大小几乎不会有很大的变化,且和16倍下采样后每个cell的感受野大小一致。

原yolov5n.yaml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]

# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]

yolov5_new.yaml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1 # number of classes
depth_multiple: 1 # model depth multiple
width_multiple: 1 # layer channel multiple
anchors:
- [71.741,66.536,69.588,70.286,73.263,72.851]

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [16, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [32, 3, 2]], # 1-P2/4
[-1, 1, C3, [32]],
[-1, 1, Conv, [64, 3, 2]], # 3-P3/8
[-1, 2, C3, [64]],
[-1, 1, Conv, [128, 3, 2]], # 5-P4/16
[-1, 3, C3, [128]],
[-1, 1, SPPF, [256, 5]], # 7
]

# YOLOv5 v6.0 head
head:
[
[-1, 1, Conv, [128, 1, 1]],
[-1, 1, C3, [128, False]], # 9 (P4/16-medium)

[[9], 1, Detect, [nc, anchors]], # Detect(P4)
]

yolov5单目标检测简化改进
https://xinhaojin.github.io/2022/12/07/yolov5单目标检测简化改进/
作者
xinhaojin
发布于
2022年12月7日
许可协议