1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
| class YOLOPAFPN(nn.Module): """ YOLOv3 model. Darknet 53 is the default backbone of this model. """
def __init__( self, depth=1.0, width=1.0, in_features=("dark3", "dark4"), in_channels=[256, 512], depthwise=False, act="silu", ): super().__init__() self.backbone = CSPDarknet(depth, width, depthwise=depthwise, act=act) self.in_features = in_features self.in_channels = in_channels Conv = DWConv if depthwise else BaseConv
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
self.reduce_conv1 = BaseConv( int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act ) self.C3_p3 = CSPLayer( int(2 * in_channels[0] * width), int(in_channels[0] * width), round(3 * depth), False, depthwise=depthwise, act=act, )
self.bu_conv2 = Conv( int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act ) self.C3_n3 = CSPLayer( int(2 * in_channels[0] * width), int(in_channels[1] * width), round(3 * depth), False, depthwise=depthwise, act=act, )
def forward(self, input): """ Args: inputs: input images.
Returns: Tuple[Tensor]: FPN feature. """
out_features = self.backbone(input) features = [out_features[f] for f in self.in_features] [x2,x1] = features
fpn_out1 = self.reduce_conv1(x1) f_out1 = self.upsample(fpn_out1) f_out1 = torch.cat([f_out1, x2], 1) pan_out2 = self.C3_p3(f_out1)
p_out1 = self.bu_conv2(pan_out2) p_out1 = torch.cat([p_out1, fpn_out1], 1) pan_out1 = self.C3_n3(p_out1)
outputs = (pan_out2, pan_out1) return outputs
|