用yolox预测结果自动生成voc数据集标签文件

本文最后更新于 2024年10月2日 上午

问题

已有少量(100张)数据集由手工标注,训练结果也不算差,但希望能够进一步提高准确率,需要扩充数据集样本,手工标注太累,因此利用已有训练权重进行预测,用预测结果自动生成xml格式的标注文件,当然也会存在预测错误的情况,自定义条件筛选正确,其余手工标注即可。

voc数据集的xml文件格式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
<annotation>
<folder>jiyan[_new</folder>
<filename>00002.png</filename>
<path>E:[[Y1[[验证码[[数据集[[jiyan[_new[[00002.png</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>300</width>
<height>200</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>word</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>123</xmin>
<ymin>52</ymin>
<xmax>177</xmax>
<ymax>106</ymax>
</bndbox>
</object>
<object>
<name>word</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>206</xmin>
<ymin>16</ymin>
<xmax>260</xmax>
<ymax>70</ymax>
</bndbox>
</object>
<object>
<name>word</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>194</xmin>
<ymin>90</ymin>
<xmax>247</xmax>
<ymax>142</ymax>
</bndbox>
</object>
</annotation>

修改预测代码

使得针对每场图片,输出预测矩形框及对应的类别

生成xml文件

拿到矩形框和类别名,就可以写xml文件了,按照上面的格式写就行,有些标签是次要的,并不会用到,可以省略。

这个函数是copilot插件自动生成的,我只写了个函数名,连参数都没写,就给我自动补全了,你敢信?属实牛逼!

我只改动了两三行,再加个import,就能用了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import xml.etree.ElementTree as et
def box2xml(bboxes, class[_names, save[_path):
root = et.Element('annotation')
et.SubElement(root, 'folder').text = 'VOC2007'
#et.SubElement(root, 'filename').text = os.path.basename(save[_path)
et.SubElement(root, 'source').text = ' '.join([['VOC2007', 'createed by YOLOX'[])
#et.SubElement(root, 'segmented').text = '0'
size = et.SubElement(root, 'size')
et.SubElement(size, 'width').text = '300'
et.SubElement(size, 'height').text = '200'
et.SubElement(size, 'depth').text = '3'
for i in range(bboxes.shape[[0[]):
obj = et.SubElement(root, 'object')
et.SubElement(obj, 'name').text = class[_names[[i[]
et.SubElement(obj, 'pose').text = 'Unspecified'
et.SubElement(obj, 'truncated').text = '0'
et.SubElement(obj, 'difficult').text = '0'
bbox = et.SubElement(obj, 'bndbox')
et.SubElement(bbox, 'xmin').text = str(bboxes[[i, 0[])
et.SubElement(bbox, 'ymin').text = str(bboxes[[i, 1[])
et.SubElement(bbox, 'xmax').text = str(bboxes[[i, 2[])
et.SubElement(bbox, 'ymax').text = str(bboxes[[i, 3[])
tree = et.ElementTree(root)
tree.write(save[_path)
print('save xml file to {}'.format(save[_path))

怎么确定标注的正确性?

具体问题具体分析

针对我的场景,正确标注应该是3个框,已有权重有时会只检测出两个框,因此我的筛选条件就是,预测框个数<3的,把文件名汇总起来最后输出,我自己再修改即可。

这样工作量就从标注500多张图片锐减到30多张。

代码

由tools/demo.py修改

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#!/usr/bin/env python3
# -[*- coding:utf-8 -[*-
# Copyright (c) Megvii, Inc. and its affiliates.

import argparse
import os
import time
from loguru import logger
import cv2
import numpy as np
import torch

from yolox.data.data[_augment import ValTransform
from yolox.data.datasets import COCO[_CLASSES
from yolox.exp import get[_exp
from yolox.utils import fuse[_model, get[_model[_info, postprocess, vis

import xml.etree.ElementTree as et

IMAGE[_EXT = [[".jpg", ".jpeg", ".webp", ".bmp", ".png"[]
#python tools/predict2xml.py image -n yolox-s -c weights/90jiyan.pth --path /home/jxh/work/YOLOX/datasets/VOCdevkit/VOC2007/JPEGImages --conf 0.6 --nms 0.6 --save[_result --device [[cpu/gpu[]
def make[_parser():
parser = argparse.ArgumentParser("YOLOX Demo!")
parser.add[_argument(
"demo", default="image", help="demo type, eg. image, video and webcam"
)
parser.add[_argument("-expn", "--experiment-name", type=str, default='test')
parser.add[_argument("-n", "--name", type=str, default='yolox-s', help="model name")

parser.add[_argument(
"--path", default="./assets/test", help="path to images or video"
)
parser.add[_argument("--camid", type=int, default=0, help="webcam demo camera id")
parser.add[_argument(
"--save[_result",
action="store[_true",
help="whether to save the inference result of image/video",
)

# exp file
parser.add[_argument(
"-f",
"--exp[_file",
default='exps/example/yolox[_voc/yolox[_voc[_s.py',
type=str,
help="pls input your experiment description file",
)
parser.add[_argument("-c", "--ckpt", default='YOLOX[_outputs/yolox[_voc[_s/90jiyan[_new.pth', type=str, help="ckpt for eval")
parser.add[_argument(
"--device",
default="cpu",
type=str,
help="device to run our model, can either be cpu or gpu",
)
parser.add[_argument("--conf", default=0.5, type=float, help="test conf")
parser.add[_argument("--nms", default=0.5, type=float, help="test nms threshold")
parser.add[_argument("--tsize", default=None, type=int, help="test img size")
parser.add[_argument(
"--fp16",
dest="fp16",
default=False,
action="store[_true",
help="Adopting mix precision evaluating.",
)
parser.add[_argument(
"--legacy",
dest="legacy",
default=False,
action="store[_true",
help="To be compatible with older versions",
)
parser.add[_argument(
"--fuse",
dest="fuse",
default=False,
action="store[_true",
help="Fuse conv and bn for testing.",
)
parser.add[_argument(
"--trt",
dest="trt",
default=False,
action="store[_true",
help="Using TensorRT model for testing.",
)
return parser


def get[_image[_list(path):
image[_names = [[[]
for maindir, subdir, file[_name[_list in os.walk(path):
for filename in file[_name[_list:
apath = os.path.join(maindir, filename)
ext = os.path.splitext(apath)[[1[]
if ext in IMAGE[_EXT:
image[_names.append(apath)
return image[_names

def box2xml(bboxes, class[_names, save[_path):
root = et.Element('annotation')
et.SubElement(root, 'folder').text = 'VOC2007'
#et.SubElement(root, 'filename').text = os.path.basename(save[_path)
et.SubElement(root, 'source').text = ' '.join([['VOC2007', 'createed by YOLOX'[])
#et.SubElement(root, 'segmented').text = '0'
size = et.SubElement(root, 'size')
et.SubElement(size, 'width').text = '300'
et.SubElement(size, 'height').text = '200'
et.SubElement(size, 'depth').text = '3'
for i in range(bboxes.shape[[0[]):
obj = et.SubElement(root, 'object')
et.SubElement(obj, 'name').text = class[_names[[i[]
et.SubElement(obj, 'pose').text = 'Unspecified'
et.SubElement(obj, 'truncated').text = '0'
et.SubElement(obj, 'difficult').text = '0'
bbox = et.SubElement(obj, 'bndbox')
et.SubElement(bbox, 'xmin').text = str(bboxes[[i, 0[])
et.SubElement(bbox, 'ymin').text = str(bboxes[[i, 1[])
et.SubElement(bbox, 'xmax').text = str(bboxes[[i, 2[])
et.SubElement(bbox, 'ymax').text = str(bboxes[[i, 3[])
tree = et.ElementTree(root)
tree.write(save[_path)
print('save xml file to {}'.format(save[_path))

class Predictor(object):
def [_[_init[_[_(
self,
model,
exp,
cls[_names=COCO[_CLASSES,
trt[_file=None,
decoder=None,
device="cpu",
fp16=False,
legacy=False,
):
self.model = model
self.cls[_names = cls[_names
self.decoder = decoder
self.num[_classes = exp.num[_classes
self.confthre = exp.test[_conf
self.nmsthre = exp.nmsthre
self.test[_size = exp.test[_size
self.device = device
self.fp16 = fp16
self.preproc = ValTransform(legacy=legacy)
if trt[_file is not None:
from torch2trt import TRTModule

model[_trt = TRTModule()
model[_trt.load[_state[_dict(torch.load(trt[_file))

x = torch.ones(1, 3, exp.test[_size[[0[], exp.test[_size[[1[]).cuda()
self.model(x)
self.model = model[_trt

def inference(self, img):
img[_info = {"id": 0}
if isinstance(img, str):
img[_info[["file[_name"[] = os.path.basename(img)
img = cv2.imread(img)
else:
img[_info[["file[_name"[] = None

height, width = img.shape[[:2[]
img[_info[["height"[] = height
img[_info[["width"[] = width
img[_info[["raw[_img"[] = img

ratio = min(self.test[_size[[0[] / img.shape[[0[], self.test[_size[[1[] / img.shape[[1[])
img[_info[["ratio"[] = ratio

img, [_ = self.preproc(img, None, self.test[_size)
img = torch.from[_numpy(img).unsqueeze(0)
img = img.float()
if self.device == "gpu":
img = img.cuda()
if self.fp16:
img = img.half() # to FP16

with torch.no[_grad():
t0 = time.time()
outputs = self.model(img)
if self.decoder is not None:
outputs = self.decoder(outputs, dtype=outputs.type())
outputs = postprocess(
outputs, self.num[_classes, self.confthre,
self.nmsthre, class[_agnostic=True
)
logger.info("Infer time: {:.4f}s".format(time.time() - t0))
return outputs, img[_info

def visual(self, output, img[_info, cls[_conf=0.5):
#print(img[_info)
'''
{'id': 0, 'file[_name': '00032团圆汤.png', 'height': 200, 'width': 300,'''
ratio = img[_info[["ratio"[]
img = img[_info[["raw[_img"[]
if output is None:
return img
output = output.cpu()

bboxes = output[[:, 0:4[]
# preprocessing: resize
bboxes /= ratio
boxes=bboxes.numpy()
boxes = boxes.astype(int)
print(boxes)
cls = output[[:, 6[]
clses= cls.numpy()
#转为list
clses = clses.tolist()
classnames = [[self.cls[_names[[int(i)[] for i in clses[]
print(classnames)
box2xml(boxes, classnames, 'xml[_output/'+img[_info[['file[_name'[].split('.')[[0[]+'.xml')
scores = output[[:, 4[] [* output[[:, 5[]

vis[_res = vis(img, bboxes, scores, cls, cls[_conf, self.cls[_names)
return vis[_res,bboxes

def image[_demo(predictor, vis[_folder, path, current[_time, save[_result):
if os.path.isdir(path):
files = get[_image[_list(path)
else:
files = [[path[]
files.sort()
error=[[[]
for image[_name in files:
outputs, img[_info = predictor.inference(image[_name)
result[_image,bboxes = predictor.visual(outputs[[0[], img[_info, predictor.confthre)
if len(bboxes)<3:
error.append(image[_name)
if save[_result:
save[_folder = os.path.join(
vis[_folder, time.strftime("%Y[_%m[_%d[_%H[_%M[_%S", current[_time)
)
os.makedirs(save[_folder, exist[_ok=True)
save[_file[_name = os.path.join(save[_folder, os.path.basename(image[_name))
logger.info("Saving detection result in {}".format(save[_file[_name))
####################################
bboxes=bboxes.numpy()
bboxes = bboxes.astype(int)
log[_file = open('log.txt','a+')
log[_file.write(save[_file[_name+"[[n")
log[_file.write(str(bboxes)+"[[n")
log[_file.close()
###################################
# result[_image=koutu(result[_image,bboxes)
cv2.imwrite(save[_file[_name, result[_image)
ch = cv2.waitKey(0)
if ch == 27 or ch == ord("q") or ch == ord("Q"):
break
print('错误标注文件:',error)


def imageflow[_demo(predictor, vis[_folder, current[_time, args):
cap = cv2.VideoCapture(args.path if args.demo == "video" else args.camid)
width = cap.get(cv2.CAP[_PROP[_FRAME[_WIDTH) # float
height = cap.get(cv2.CAP[_PROP[_FRAME[_HEIGHT) # float
fps = cap.get(cv2.CAP[_PROP[_FPS)
if args.save[_result:
save[_folder = os.path.join(
vis[_folder, time.strftime("%Y[_%m[_%d[_%H[_%M[_%S", current[_time)
)
os.makedirs(save[_folder, exist[_ok=True)
if args.demo == "video":
save[_path = os.path.join(save[_folder, os.path.basename(args.path))
else:
save[_path = os.path.join(save[_folder, "camera.mp4")
logger.info(f"video save[_path is {save[_path}")
vid[_writer = cv2.VideoWriter(
save[_path, cv2.VideoWriter[_fourcc([*"mp4v"), fps, (int(width), int(height))
)
while True:
ret[_val, frame = cap.read()
if ret[_val:
outputs, img[_info = predictor.inference(frame)
result[_frame = predictor.visual(outputs[[0[], img[_info, predictor.confthre)
if args.save[_result:
vid[_writer.write(result[_frame)
else:
cv2.namedWindow("yolox", cv2.WINDOW[_NORMAL)
cv2.imshow("yolox", result[_frame)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord("q") or ch == ord("Q"):
break
else:
break


def main(exp, args):
if not args.experiment[_name:
args.experiment[_name = exp.exp[_name

file[_name = os.path.join(exp.output[_dir, args.experiment[_name)
os.makedirs(file[_name, exist[_ok=True)

vis[_folder = None
if args.save[_result:
vis[_folder = os.path.join(file[_name, "vis[_res")
os.makedirs(vis[_folder, exist[_ok=True)

if args.trt:
args.device = "gpu"

logger.info("Args: {}".format(args))

if args.conf is not None:
exp.test[_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test[_size = (args.tsize, args.tsize)

model = exp.get[_model()
logger.info("Model Summary: {}".format(get[_model[_info(model, exp.test[_size)))

if args.device == "gpu":
model.cuda()
if args.fp16:
model.half() # to FP16
model.eval()

if not args.trt:
if args.ckpt is None:
ckpt[_file = os.path.join(file[_name, "best[_ckpt.pth")
else:
ckpt[_file = args.ckpt
logger.info("loading checkpoint")
ckpt = torch.load(ckpt[_file, map[_location="cpu")
# load the model state dict
model.load[_state[_dict(ckpt[["model"[])
logger.info("loaded checkpoint done.")

if args.fuse:
logger.info("[[tFusing model...")
model = fuse[_model(model)

if args.trt:
assert not args.fuse, "TensorRT model is not support model fusing!"
trt[_file = os.path.join(file[_name, "model[_trt.pth")
assert os.path.exists(
trt[_file
), "TensorRT model is not found![[n Run python3 tools/trt.py first!"
model.head.decode[_in[_inference = False
decoder = model.head.decode[_outputs
logger.info("Using TensorRT to inference")
else:
trt[_file = None
decoder = None

predictor = Predictor(
model, exp, COCO[_CLASSES, trt[_file, decoder,
args.device, args.fp16, args.legacy,
)
current[_time = time.localtime()
if args.demo == "image":
image[_demo(predictor, vis[_folder, args.path, current[_time, args.save[_result)
elif args.demo == "video" or args.demo == "webcam":
imageflow[_demo(predictor, vis[_folder, current[_time, args)


if [_[_name[_[_ == "[_[_main[_[_":
args = make[_parser().parse[_args()
exp = get[_exp(args.exp[_file, args.name)

main(exp, args)

用yolox预测结果自动生成voc数据集标签文件
https://xinhaojin.github.io/2022/07/12/用yolox预测结果自动生成voc数据集标签文件/
作者
xinhaojin
发布于
2022年7月12日
更新于
2024年10月2日
许可协议