1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
import argparse import os import time from loguru import logger import cv2 import numpy as np import torch
from yolox.data.data[_augment import ValTransform from yolox.data.datasets import COCO[_CLASSES from yolox.exp import get[_exp from yolox.utils import fuse[_model, get[_model[_info, postprocess, vis
import xml.etree.ElementTree as et
IMAGE[_EXT = [[".jpg", ".jpeg", ".webp", ".bmp", ".png"[]
def make[_parser(): parser = argparse.ArgumentParser("YOLOX Demo!") parser.add[_argument( "demo", default="image", help="demo type, eg. image, video and webcam" ) parser.add[_argument("-expn", "--experiment-name", type=str, default='test') parser.add[_argument("-n", "--name", type=str, default='yolox-s', help="model name")
parser.add[_argument( "--path", default="./assets/test", help="path to images or video" ) parser.add[_argument("--camid", type=int, default=0, help="webcam demo camera id") parser.add[_argument( "--save[_result", action="store[_true", help="whether to save the inference result of image/video", )
parser.add[_argument( "-f", "--exp[_file", default='exps/example/yolox[_voc/yolox[_voc[_s.py', type=str, help="pls input your experiment description file", ) parser.add[_argument("-c", "--ckpt", default='YOLOX[_outputs/yolox[_voc[_s/90jiyan[_new.pth', type=str, help="ckpt for eval") parser.add[_argument( "--device", default="cpu", type=str, help="device to run our model, can either be cpu or gpu", ) parser.add[_argument("--conf", default=0.5, type=float, help="test conf") parser.add[_argument("--nms", default=0.5, type=float, help="test nms threshold") parser.add[_argument("--tsize", default=None, type=int, help="test img size") parser.add[_argument( "--fp16", dest="fp16", default=False, action="store[_true", help="Adopting mix precision evaluating.", ) parser.add[_argument( "--legacy", dest="legacy", default=False, action="store[_true", help="To be compatible with older versions", ) parser.add[_argument( "--fuse", dest="fuse", default=False, action="store[_true", help="Fuse conv and bn for testing.", ) parser.add[_argument( "--trt", dest="trt", default=False, action="store[_true", help="Using TensorRT model for testing.", ) return parser
def get[_image[_list(path): image[_names = [[[] for maindir, subdir, file[_name[_list in os.walk(path): for filename in file[_name[_list: apath = os.path.join(maindir, filename) ext = os.path.splitext(apath)[[1[] if ext in IMAGE[_EXT: image[_names.append(apath) return image[_names
def box2xml(bboxes, class[_names, save[_path): root = et.Element('annotation') et.SubElement(root, 'folder').text = 'VOC2007' et.SubElement(root, 'source').text = ' '.join([['VOC2007', 'createed by YOLOX'[]) size = et.SubElement(root, 'size') et.SubElement(size, 'width').text = '300' et.SubElement(size, 'height').text = '200' et.SubElement(size, 'depth').text = '3' for i in range(bboxes.shape[[0[]): obj = et.SubElement(root, 'object') et.SubElement(obj, 'name').text = class[_names[[i[] et.SubElement(obj, 'pose').text = 'Unspecified' et.SubElement(obj, 'truncated').text = '0' et.SubElement(obj, 'difficult').text = '0' bbox = et.SubElement(obj, 'bndbox') et.SubElement(bbox, 'xmin').text = str(bboxes[[i, 0[]) et.SubElement(bbox, 'ymin').text = str(bboxes[[i, 1[]) et.SubElement(bbox, 'xmax').text = str(bboxes[[i, 2[]) et.SubElement(bbox, 'ymax').text = str(bboxes[[i, 3[]) tree = et.ElementTree(root) tree.write(save[_path) print('save xml file to {}'.format(save[_path))
class Predictor(object): def [_[_init[_[_( self, model, exp, cls[_names=COCO[_CLASSES, trt[_file=None, decoder=None, device="cpu", fp16=False, legacy=False, ): self.model = model self.cls[_names = cls[_names self.decoder = decoder self.num[_classes = exp.num[_classes self.confthre = exp.test[_conf self.nmsthre = exp.nmsthre self.test[_size = exp.test[_size self.device = device self.fp16 = fp16 self.preproc = ValTransform(legacy=legacy) if trt[_file is not None: from torch2trt import TRTModule
model[_trt = TRTModule() model[_trt.load[_state[_dict(torch.load(trt[_file))
x = torch.ones(1, 3, exp.test[_size[[0[], exp.test[_size[[1[]).cuda() self.model(x) self.model = model[_trt
def inference(self, img): img[_info = {"id": 0} if isinstance(img, str): img[_info[["file[_name"[] = os.path.basename(img) img = cv2.imread(img) else: img[_info[["file[_name"[] = None
height, width = img.shape[[:2[] img[_info[["height"[] = height img[_info[["width"[] = width img[_info[["raw[_img"[] = img
ratio = min(self.test[_size[[0[] / img.shape[[0[], self.test[_size[[1[] / img.shape[[1[]) img[_info[["ratio"[] = ratio
img, [_ = self.preproc(img, None, self.test[_size) img = torch.from[_numpy(img).unsqueeze(0) img = img.float() if self.device == "gpu": img = img.cuda() if self.fp16: img = img.half()
with torch.no[_grad(): t0 = time.time() outputs = self.model(img) if self.decoder is not None: outputs = self.decoder(outputs, dtype=outputs.type()) outputs = postprocess( outputs, self.num[_classes, self.confthre, self.nmsthre, class[_agnostic=True ) logger.info("Infer time: {:.4f}s".format(time.time() - t0)) return outputs, img[_info
def visual(self, output, img[_info, cls[_conf=0.5): ''' {'id': 0, 'file[_name': '00032团圆汤.png', 'height': 200, 'width': 300,''' ratio = img[_info[["ratio"[] img = img[_info[["raw[_img"[] if output is None: return img output = output.cpu()
bboxes = output[[:, 0:4[] bboxes /= ratio boxes=bboxes.numpy() boxes = boxes.astype(int) print(boxes) cls = output[[:, 6[] clses= cls.numpy() clses = clses.tolist() classnames = [[self.cls[_names[[int(i)[] for i in clses[] print(classnames) box2xml(boxes, classnames, 'xml[_output/'+img[_info[['file[_name'[].split('.')[[0[]+'.xml') scores = output[[:, 4[] [* output[[:, 5[]
vis[_res = vis(img, bboxes, scores, cls, cls[_conf, self.cls[_names) return vis[_res,bboxes
def image[_demo(predictor, vis[_folder, path, current[_time, save[_result): if os.path.isdir(path): files = get[_image[_list(path) else: files = [[path[] files.sort() error=[[[] for image[_name in files: outputs, img[_info = predictor.inference(image[_name) result[_image,bboxes = predictor.visual(outputs[[0[], img[_info, predictor.confthre) if len(bboxes)<3: error.append(image[_name) if save[_result: save[_folder = os.path.join( vis[_folder, time.strftime("%Y[_%m[_%d[_%H[_%M[_%S", current[_time) ) os.makedirs(save[_folder, exist[_ok=True) save[_file[_name = os.path.join(save[_folder, os.path.basename(image[_name)) logger.info("Saving detection result in {}".format(save[_file[_name)) bboxes=bboxes.numpy() bboxes = bboxes.astype(int) log[_file = open('log.txt','a+') log[_file.write(save[_file[_name+"[[n") log[_file.write(str(bboxes)+"[[n") log[_file.close() cv2.imwrite(save[_file[_name, result[_image) ch = cv2.waitKey(0) if ch == 27 or ch == ord("q") or ch == ord("Q"): break print('错误标注文件:',error)
def imageflow[_demo(predictor, vis[_folder, current[_time, args): cap = cv2.VideoCapture(args.path if args.demo == "video" else args.camid) width = cap.get(cv2.CAP[_PROP[_FRAME[_WIDTH) height = cap.get(cv2.CAP[_PROP[_FRAME[_HEIGHT) fps = cap.get(cv2.CAP[_PROP[_FPS) if args.save[_result: save[_folder = os.path.join( vis[_folder, time.strftime("%Y[_%m[_%d[_%H[_%M[_%S", current[_time) ) os.makedirs(save[_folder, exist[_ok=True) if args.demo == "video": save[_path = os.path.join(save[_folder, os.path.basename(args.path)) else: save[_path = os.path.join(save[_folder, "camera.mp4") logger.info(f"video save[_path is {save[_path}") vid[_writer = cv2.VideoWriter( save[_path, cv2.VideoWriter[_fourcc([*"mp4v"), fps, (int(width), int(height)) ) while True: ret[_val, frame = cap.read() if ret[_val: outputs, img[_info = predictor.inference(frame) result[_frame = predictor.visual(outputs[[0[], img[_info, predictor.confthre) if args.save[_result: vid[_writer.write(result[_frame) else: cv2.namedWindow("yolox", cv2.WINDOW[_NORMAL) cv2.imshow("yolox", result[_frame) ch = cv2.waitKey(1) if ch == 27 or ch == ord("q") or ch == ord("Q"): break else: break
def main(exp, args): if not args.experiment[_name: args.experiment[_name = exp.exp[_name
file[_name = os.path.join(exp.output[_dir, args.experiment[_name) os.makedirs(file[_name, exist[_ok=True)
vis[_folder = None if args.save[_result: vis[_folder = os.path.join(file[_name, "vis[_res") os.makedirs(vis[_folder, exist[_ok=True)
if args.trt: args.device = "gpu"
logger.info("Args: {}".format(args))
if args.conf is not None: exp.test[_conf = args.conf if args.nms is not None: exp.nmsthre = args.nms if args.tsize is not None: exp.test[_size = (args.tsize, args.tsize)
model = exp.get[_model() logger.info("Model Summary: {}".format(get[_model[_info(model, exp.test[_size)))
if args.device == "gpu": model.cuda() if args.fp16: model.half() model.eval()
if not args.trt: if args.ckpt is None: ckpt[_file = os.path.join(file[_name, "best[_ckpt.pth") else: ckpt[_file = args.ckpt logger.info("loading checkpoint") ckpt = torch.load(ckpt[_file, map[_location="cpu") model.load[_state[_dict(ckpt[["model"[]) logger.info("loaded checkpoint done.")
if args.fuse: logger.info("[[tFusing model...") model = fuse[_model(model)
if args.trt: assert not args.fuse, "TensorRT model is not support model fusing!" trt[_file = os.path.join(file[_name, "model[_trt.pth") assert os.path.exists( trt[_file ), "TensorRT model is not found![[n Run python3 tools/trt.py first!" model.head.decode[_in[_inference = False decoder = model.head.decode[_outputs logger.info("Using TensorRT to inference") else: trt[_file = None decoder = None
predictor = Predictor( model, exp, COCO[_CLASSES, trt[_file, decoder, args.device, args.fp16, args.legacy, ) current[_time = time.localtime() if args.demo == "image": image[_demo(predictor, vis[_folder, args.path, current[_time, args.save[_result) elif args.demo == "video" or args.demo == "webcam": imageflow[_demo(predictor, vis[_folder, current[_time, args)
if [_[_name[_[_ == "[_[_main[_[_": args = make[_parser().parse[_args() exp = get[_exp(args.exp[_file, args.name)
main(exp, args)
|