PyTorch05-批训练(Batch Training)

原文:批训练 - PyTorch 莫烦Python (mofanpy.com)

单个数据训练太慢,一批一批训练会加快训练速度

DataLoader

Torch提供了DataLoader来帮助批训练

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import torch.utils.data as Data
torch.manual_seed(1) # reproducible

BATCH_SIZE = 5 # 批训练的数据个数

x = torch.linspace(1, 10, 10) # x data (torch tensor)
y = torch.linspace(10, 1, 10) # y data (torch tensor)

# 先转换成 torch 能识别的 Dataset
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)

# 把 dataset 放入 DataLoader
loader = Data.DataLoader(
dataset=torch_dataset, # torch TensorDataset format
batch_size=BATCH_SIZE, # mini batch size
shuffle=True, # 要不要打乱数据 (打乱比较好)
num_workers=2, # 多线程来读数据
)

for epoch in range(3): # 训练所有!整套!数据 3 次
for step, (batch_x, batch_y) in enumerate(loader): # 每一步 loader 释放一小批数据用来学习
# 假设这里就是你训练的地方...

# 打出来一些数据
print('Epoch: ', epoch, ' Step: ', step, ' batch x: ',
batch_x.numpy(), ' batch y: ', batch_y.numpy())

"""
Epoch: 0 Step: 0 batch x: [ 6. 7. 2. 3. 1.] batch y: [ 5. 4. 9. 8. 10.]
Epoch: 0 Step: 1 batch x: [ 9. 10. 4. 8. 5.] batch y: [ 2. 1. 7. 3. 6.]
Epoch: 1 Step: 0 batch x: [ 3. 4. 2. 9. 10.] batch y: [ 8. 7. 9. 2. 1.]
Epoch: 1 Step: 1 batch x: [ 1. 7. 8. 5. 6.] batch y: [ 10. 4. 3. 6. 5.]
Epoch: 2 Step: 0 batch x: [ 3. 9. 2. 6. 7.] batch y: [ 8. 2. 9. 5. 4.]
Epoch: 2 Step: 1 batch x: [ 10. 4. 8. 1. 5.] batch y: [ 1. 7. 3. 10. 6.]
"""

PyTorch05-批训练(Batch Training)
https://xinhaojin.github.io/2022/04/03/pytorch05-批训练batch-training/
作者
xinhaojin
发布于
2022年4月3日
许可协议