1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
| import torch import torch.nn.functional as F import matplotlib.pyplot as plt
n_data = torch.ones(100, 2)
x0 = torch.normal(2*n_data, 1)
y0 = torch.zeros(100)
x1 = torch.normal(-2*n_data, 1)
y1 = torch.ones(100)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor) y = torch.cat((y0, y1), ).type(torch.LongTensor)
class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.out =torch.nn.Linear(n_hidden, n_output)
def forward(self, x): x = F.relu(self.hidden(x)) x =self.out(x) return x
net = Net(n_feature=2, n_hidden=10, n_output=2) print(net)
optimizer = torch.optim.SGD(net.parameters(), lr=0.02) loss_func = torch.nn.CrossEntropyLoss()
plt.ion()
for t in range(100): out = net(x) loss = loss_func(out, y)
optimizer.zero_grad() loss.backward() optimizer.step()
if t % 2 == 0: plt.cla() prediction = torch.max(out, 1)[1] pred_y = prediction.data.numpy() target_y = y.data.numpy() plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn') accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1)
plt.ioff() plt.show()
|