加载停用词
stopwords.txt是一个自定义的停用词列表,里面的词都会被过滤
1 2 3
| """读取停用词""" with open("stopwords.txt", "r", encoding="utf-8") as fp: stopwords = set([s.rstrip() for s in fp.readlines()])
|
读取文本内容,过滤停用词
1 2 3 4 5 6 7 8 9 10 11 12
| """获取文本内容""" with open("input.txt", "r", encoding="utf-8") as fp: content = fp.read()
"""中文分词""" content = jieba.lcut(content)
"""去除停用词""" text = [] for word in content: if word not in stopwords: text.append(word)
|
计算词频
词频格式是字典{词:数量},text是一个去掉停用词后的词数组,直接统计
1
| frequency = dict(Counter(text))
|
计算词频的目的是根据词频来生成词云
1
| wordcloud.fit_words(frequency)
|
wordcloud()参数
具体API请查阅wordcloud.WordCloud — wordcloud 1.8.1 documentation (amueller.github.io)
常用的有这些
1 2 3 4 5 6 7 8
| wc = WordCloud(font_path='C:\\Windows\\Fonts\\STZHONGS.TTF', background_color="white", mask=mask_image, prefer_horizontal=0.6, width=800, height=1000, colormap="tab10" )
|
其中遮罩是一个白底的图片,非白色部分就是词云的形状
有时候找的背景图不是白色或者不够白,可以在画图工具中打开图片,画笔-填充-颜色默认-白色-点击背景色
colormap就是指定的颜色集合,参数填的是string类型,可选的值有下面这些,左侧列表都可作为参数值,对应的颜色是右边这些
结果
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| from wordcloud import WordCloud import jieba from collections import Counter from imageio import imread import matplotlib.pyplot as plt
"""读取停用词""" with open("stopwords.txt", "r", encoding="utf-8") as fp: stopwords = set([s.rstrip() for s in fp.readlines()])
"""获取文本内容""" with open("input.txt", "r", encoding="utf-8") as fp: content = fp.read()
"""中文分词""" content = jieba.lcut(content)
"""去除停用词""" text = [] for word in content: if word not in stopwords: text.append(word)
frequency = dict(Counter(text))
mask_image = imread("map.jpg")
wc = WordCloud(font_path='C:\\Windows\\Fonts\\STZHONGS.TTF', background_color="white", mask=mask_image, prefer_horizontal=0.6, width=800, height=1000, colormap="tab10" )
wc.fit_words(frequency)
plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.show() wc.to_file("output.png")
|